New Solar and Tidal Technologies

Commercialisation of innovative
Technologies with high potential for Stainless Steel use for Renewable Energy

WHY Solar and Tidal

- Renewable energy generation increasing Targets
 20% by 2020
- Public and Building Industry now very conscious of Energy use, CO₂, Global warming, Price of energy
- New technologies/economics being developed
- Integrated System Technologies available
- Reduction of Grid Load
 - Individual property energy systems When?

Phil Bacon

- Europus Ltd MD
 - R&D Project Management, Commercialisation
- Clients
 - Consultant to Welsh Development Agency for sustainable energy, Automotive
 - European Commission Aeronautics, Project Management
 - Tidal Hydraulic Generators Ltd
 - Energy International Systems Ltd
 - Bank support
 - Investment Group support

Acknowledgement

- Collaboration with Corus on Solar Panel and Tidal Projects
- Opportunity through Corus R&D to speak at the Conference

NEW Solar Potential

- Solar thermal absorbers:
 - Heat pipe technology
 - Stainless steel
- Solar Thermal Air Conditioning
 - Compressor replaced with Ejector
- Super vacuum insulation
 - 15mm equivalent to 150mm polyurethane but 600°C
 - Stainless steel

Solar thermal Heat Pipe absorber

- Four years R&D/development
- Heat pipes transfer heat between 500 and 1000 times faster than copper
- Used as thermal absorber efficient at higher temperatures - 50% at 100°C above ambient
- Fresnel Lens Magnification x 5

Characteristics

- High Relative Efficiencies results in:
 - Smaller area or higher temperatures
 - Stainless steel 0.25mm thick gives:
 - Very Responsive
 - Light weight
 - Long life
 - Structurally strong design into buildings
 - Blocks heat absorption to buildings

Flat Plate Absorber

Heat Pipes

Panel Construction

Potential for this climate

- Water Heating/Room or Comfort Cooling
- Max. Temperatures up to 240°C (Further development work being done)
- Use as Air-conditioning power source
 - Hybrid system or just solar
 - Micro control system
 - Trials early next year in Greece, Denmark and UK
- Process Pre-heat as panel technology increases temperatures

Air Conditioning

Hybrid Solar System for air conditioning using a plastic ejector

Typical performance

- 4M² panels provides cooling for 200M² house Northern Europe ~ 1kW of cooling
- Technology is dependent upon:
 - Local Building Materials
 - Building characteristics
 - Ambient Temperatures
 - Comfort specification
- Costs/M² are very competitive compared to flat plate
 - BUT thinner section, lighter

Efficiency

Super Vacuum Insulation

- Panels 15 mm thickness ~ 150 polyurethane
- Normal Edge loss 9W/M length at 200°C temp. difference
- This SVP 1.5W/M length \sim same as plastic but can handle temps -150 to $+600^{\circ}$ C
- Coefficient conductivity K =
- 2 to 5 mW/Mk at 20°C
- Made from 0.1mm stainless steel

Insulation

Stainless Steel Super Vacuum Insulation panels

Commercial Options

- Solar
 - Panels
 - JV to Build local semi automated factory Now
 - Super vacuum panels
 - JV to build local semi automated factory 3 months
 - Uses refrigeration, transport, building, ovens, furnaces
 - Market £Billions
 - Air conditioning systems
 - JV to use technology and implement 15 months time

Negotiations

- UK Factory for insulation
- UK Sales, Marketing, Project implementation organisation
- Middle East factory/Sales and Marketing
- Australia/USA interest in JV

Tidal Stream Energy

RICHARD AYRE

Tidal Hydraulic

Generators Ltd

Trials Barge for different Blade designs

Prototype Production Design

- Five turbine ARRAY design started 20.1.2003 complete in Jan 2005
- Computer Modelling, detail design of blades/optimisation, structure, generators,
- System for installing/lifting Array in one day
- Testing/materials and wear/encrustation
- Performance characteristics

Energy Production

- Five turbine array 6M diameter blades in 6 knots tidal stream velocity
- Average $\sim 250 \text{kW} + (\text{max. } 1 \text{MW})$
- For lower velocities ~ 2 knots
 - Increase number of turbines for an array (40)
 - Increase Max.10M diameter
- World potential
 - -0.1% of tidal stream = 5 x existing electrical capacity

Tidal Stream Array

Tidal Hydraulic Generators Ltd

- First in UK to generate electricity to land (March 2003)
- Comparable with on shore wind price
- Can be utilised for:
 - Electrical generation
 - Desalination
 - Hydrogen Generation

Benefits and Costs

- Environmentally welcomed
- Not seen and heard on surface
- Fish stocks can increase
- Can be removed completely, cheaply and quickly
- Financial Model very positive
- 5 turbine array project to prove this

Future

- Desalination plant direct from Array 2 years
- Desalination Electrolysis Hydrogen 3 years
 - Cheaper than underwater cables to the grid (£1 million/mile)
 - Local Hydrogen infrastructure within 20 years

Commercial Potential

- Tidal Stream
 - Tidal Hydraulic Generators Ltd
 - Partner for the existing project
 - In two/three years looking for JVs across the world (UK covered)
 - Electrical Energy Generation
 - Desalination
 - Hydrogen Production